Equation-Based Modeling

COMSOL Conference 2017 Singapore Pratyush Sharma

© Copyright 2017 COMSOL. COMSOL, the COMSOL logo, COMSOL Multiphysics, Capture the Concept, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks

$$\rho C_{\rho} \frac{\partial T}{\partial t} + \rho C_{\rho} \underline{u} \cdot \nabla T + \nabla \cdot (-\kappa \nabla T) = Q$$

$$\rho \frac{\partial^2 \underline{u}}{\partial t^2} = \nabla \cdot \underline{\underline{S}} + F_v$$

$$\rho C_o \frac{\partial T}{\partial t} + \rho C_o \underline{u} \cdot \nabla T + \nabla \cdot (-\kappa \nabla T) = Q$$

A Look Under the Hood

$$\rho\left(\mathbf{u}\cdot\nabla\right)\mathbf{u} = \nabla\cdot\left(-p\mathbf{I} + \mu(\nabla\mathbf{u} + (\nabla\mathbf{u})^{T}) - \frac{2}{3}\mu(\nabla\cdot\mathbf{u})\mathbf{I}\right) + \mathbf{F}$$
$$\nabla\cdot(\rho\mathbf{u}) = 0$$

$$\begin{bmatrix} \frac{-\hbar^2}{2m} \nabla^2 + V \end{bmatrix} \Psi = i\hbar \frac{\partial}{\partial t} \Psi \qquad \rho C_p \frac{\partial T}{\partial t} + \rho C_p \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T)$$
$$\nabla^2 p + \left(\frac{\omega^2}{c_s^2}\right) \frac{p}{\rho} = 0 \qquad \nabla \cdot (-D_i \nabla c_i) + \mathbf{u} \cdot \nabla c_i = R_i$$
$$\nabla \cdot (\mathbf{C} : (\epsilon - \epsilon_0 - \epsilon_{\mathbf{th}}) + \sigma_0) = \mathbf{F}$$

$$\nabla \cdot \mathbf{D} = \rho \quad \nabla \times \mathbf{E} = -\partial_t \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{H} = \mathbf{J} + \partial_t \mathbf{D}$$

A Look Under the Hood

Modeling Approaches

- Inset predefined physics
- Coupling physics (manual or automatic)
- Enter user defined functions. All expressions can depend on all the variables introduced (analytical, interpolation from file ...)
- Add or change terms of the equations set in the physics (and multiphysics) nodes
- Insert your own equations with equation forms (and make it automatic with Physics Builder)

The Mathematics Interface

Equation-Based Modeling

- What?
 - ODE & DAE interfaces, PDE interfaces, boundary conditions
- Why?
 - Lumped parameter systems, continuous systems
- How?
 - Demo: population dynamics, thermal curing
- Could I get myself in trouble?
 - Verification & validation
- Hands on : Coupling PDE with global and distributed ODE

What PDE, ODE, and DAE stand for?

- Partial differential equations (PDE)
 - Three main interfaces (form)
 - Need boundary conditions
- Ordinary differential equations (ODEs)
 - Global (space indipendent)
 - Distributed (space dependent)
 - Distributed, but not continuous
 - (Always) time dependent
- Algebraic equations
 - As for ODE, global or distributed
 - Do not contain time (and often not even the space)

Part I: Lumped Parameter Systems

- Global ODEs
- Global Algebraic Equation

Lumped Parameter Systems

Contaminant concentration c(x, y, z, t)

Population dynamics

Contaminant amount C(t)

Lumped Parameter Systems

Balance laws ➡

Rate of change of some quantity = amount entering - leaving + production - consumption

Example 1 : Dynamics $m\frac{d^{2}u}{dt^{2}} = -ku - c\frac{du}{dt}$ Example 2 : Prey-predator system $\frac{du}{dt} = a_{1}u(1 - \frac{u}{k}) - b_{1}uv$ $\frac{dv}{dt} = -a_{2}v + b_{2}uv$ $m\frac{d^{2}u}{dt^{2}} + ku + c\frac{du}{dt} = 0$ $\frac{du}{dt} - a_{1}u(1 - \frac{u}{k}) + b_{1}uv = 0$ $\frac{dv}{dt} + a_{2}v - b_{2}uv = 0$

Global ODEs

• Example: Lotka-Volterra equations

$$\frac{du}{dt} = a_1 u (1 - u/k) - b_1 uv$$

$$\frac{dv}{dt} = -a_2v + b_2uv$$

$$u(0) = u_{ini}, v(0) = v_{ini}$$

Global Algebraic Equations

- Same template as Global ODEs
- What are the initial values for?
 - Stationary solvers

Model Builder	Settings Global Equations				
 Global Algebraic Equation.mph (root) Global Definitions 	Label: Global Equations 1				
Image: Image	Global Equations $f(u\mu_t,\mu_t,t) = 0, \ u(t_0) = u_0, \ u_t(t_0) = u_{t_0}$				
Older State Control	Name	f(u,ut,utt,t) (1)	Initial value (u_0) (Initial value (u_t0)	
▲ ^{ndb} Study 1	u	u^3-8	1	0	
Step 1: Stationary Solver Configurations			0	0	

Physics + Global Algebraic Equations

• You can add extra degrees of freedom to a physics interface

COMSOL BLOG

Modeling the Hydrostatic Pressure of a Fluid in a Deformable Container

https://www.comsol.com/blogs/modeling-hydrostatic-pressure-fluid-deformable-container/

Part II: Continuous Systems Without Spatial Interaction

- Domain ODEs and DAEs
- Boundary ODEs and DAEs
- Edge ODEs and DAEs
- Point ODEs and DAEs

Domain ODEs

Domain ODEs

- Problem parameters are spatially variable
 - Initial conditions $u(x, 0) = u_{ini}(x),...$
 - Carrying capacity is spatially variable k = k(x)
 - Prey-predator interactions have different outcomes based on location
 - $b_1 = b_1(x), b_2 = b_2(x)$
 - Climate effect? $a_1 = a_1 (x, T)$
- Every point evolves independent of neighbors
 - No spatial derivatives in the equation!
 - No boundary conditions needed

Domain ODEs in Physics

• Material evolution

$$\frac{\partial \alpha}{\partial t} = A e^{(-E_a/_{RT})} (1-\alpha)^n$$
$$\frac{\partial \alpha}{\partial t} = A e^{(-E_a/_{RT})} (1-\alpha)^n$$

- Reaction kinetics
 - Built-in if you use the Chemical Reaction Engineering Module

ODE or 1D PDE?

$$\frac{d^2u}{dt^2} - au + g(t) = 0 \qquad \text{IVP} = \text{ODE}$$
$$\frac{d^2u}{dx^2} - au + g(x) = 0 \qquad \text{BVP} = \text{PDE}$$

Spatial derivative is use PDE interfaces

Domain Algebraic Equations

- Solve $u^3 = p(x, t, ...)$ for u
- Interface is the same as Domain ODE

Example: Ideal/Non-ideal gas law

- Assume **u**=(u,v,w) and p given by Navier-Stokes
- Want to solve Convection-Conduction in gas:

$$-\nabla \cdot (k\nabla T) + \rho C \mathbf{u} \cdot \nabla T = 0$$

• Ideal gas: ρ given by pM

$$\rho = \frac{pm}{RT}$$

• Easy - analytical

- non-ideal gas law (needed for high molecular weight at very high pressures): ρ solution of $A(p+B\rho^2)(1-C\rho)-D\rho=0$
- Difficult implicit equation
- How to proceed?

Example: Non-ideal gas law

- How to solve: $A(p+B\rho^2)(1-C\rho) D\rho = 0$
- Third order equation in
- Pressure *p* is function of space
- So: this is an algebraic equation at each point in space. Solution

$$e_a = d_a = 0, f = A(p + B\rho^2)(1 - C\rho) - D\rho$$

http://www.comsol.com/blogs/solving-algebraic-field-equations/

Distributed Algebraic Equation

- What about non-linear equations with multiple solutions?
- Which solution do you get?
- For simplicity, consider the equation (u-2)^2-p=0, where p is a constant
- The solution you get will depend on the Initial Guess given by the PDE Physics Interface
- If we let p=x*y and let our modeling region be the unit square, then at (x,y)=(0,0) we should get the unique solution u=2 but at (x,y)=(1,1) we get 1 or 3 depending on our starting guess. See next slide.

Distributed Algebraic Equation

,	Source	Term	

f (u-2)^2-p

 Initial Values 				
Initial value for u:				
и	2.1	1		
Initial time derivative of u:				
<u>ди</u> дt	0	l/s		

 Initial Values 				
Initial value for u:				
и	1.9	1		
initial time derivative of u:				
<u>ди</u> дt	0	l/s		

Distributed Algebraic Equation

1.9

1.8

1.6

1.5

1.4

1.1

Source Term

f	(u-2)^2-p	
•	Initial Values	
Initia U	l value for u: 2.1	1
Initia <u>du</u> dt	l time derivative of u: 0	l/s

Part III: Continuous Systems with Spatial Interaction

Partial Differential Equations

Prey-Predator System with Migration

- PDEs!
- What if the second species does not migrate?
 - Domain ODE or PDE with $c_2 = 0$?
- Can we have a convective term?
- What happens for negative c_1 or c_2 ?

$$\frac{\partial u}{\partial t} = \nabla \cdot (c_1 \nabla u) + a_1 u (1 - u/k) - b_1 u v$$
$$\frac{\partial v}{\partial t} = \nabla \cdot (c_2 \nabla v) - a_2 v + b_2 u v$$

Balance Laws: Integral Formulation

• Balance laws for a continuous system

Rate of change of some quantity = amount entering or leaving through the boundary + production or consumption inside

$$\frac{d}{dt}\int_{V} \phi dV = -\int_{S} \vec{\Gamma} \cdot \vec{n} dS + \int_{V} f dV$$

Balance Laws: Differential Equations

Balance Laws: Differential Equations

 $\int_{V} \left[\frac{\partial \Phi}{\partial t} + div\left(\vec{\Gamma}\right) - f\right] dV = 0$

Localization argument

$$\frac{\partial \Phi}{\partial t} + div\left(\vec{\Gamma}\right) = f$$

General Form PDE

$$\begin{aligned} \frac{\partial \phi}{\partial t} + div\left(\vec{\Gamma}\right) &= f\\ \text{Usually } \phi &= e \frac{\partial u}{\partial t} + du\\ \text{Template} \qquad e \frac{\partial^2 u}{\partial t^2} + d \frac{\partial u}{\partial t} + div\left(\vec{\Gamma}\right) &= f\\ \text{HT } \phi &= \rho c_p T \qquad \rho c_p \frac{\partial T}{\partial t} + div\left(\vec{\Gamma}\right) &= f \end{aligned}$$

Constitutive Assumptions

$$e\frac{\partial^2 u}{\partial t^2} + d\frac{\partial u}{\partial t} + div\left(\vec{\Gamma}\right) = f$$

• Take the usual form for the flux

$$\vec{\Gamma} = -c\nabla u - \alpha u + \gamma$$

You specify c, α, γ

ICOMSOL

Coefficient Form PDE Template

• Specify units for independent variable and source

Coefficient Form PDE

	Acoustics	Chemistry	Black-Scholes	Fischer's Ecologic Model
u	Pressure	Concentration	Cost of option	Population
ea	$1/\rho c^2$			
d _a		1	1	1
С	1/ρ	Diffusion coef.	$-\frac{1}{2}\sigma^2 x^2$	Dispersal rate
γ	q_d/ ho			
ß		Velocity	$rx - \sigma^2 x$	
а			-r	$r(u/_{K}-1)$
f	Q_m	Reaction rate		

Helmholtz Equation, Coefficient Form PDE

 $-\nabla \cdot (c\nabla u) - k^2 u = g$

$$\sum_{i=1}^{n} \frac{\partial^2 u}{\partial t^2} + \sum_{i=1}^{n} \frac{\partial u}{\partial t} - \nabla \cdot (c \nabla u + \partial u - v) + \sum_{i=1}^{n} \nabla u + au = f$$

Coefficient matching

 $a = -\kappa^2$ f = gOption 1

a = 0 $f = g + \kappa^2 u$ Option 2

Helmholtz Equation, General Form PDE

$$-\nabla \cdot (c\nabla u) - k^{2}u = g$$

$$e \frac{\partial^{2} u}{\partial t^{2}} + d \frac{\partial u}{\partial t} + div \left(\vec{\Gamma}\right) = f$$

Match terms

$$\vec{\Gamma} = -c\nabla u$$

$$f = g + k^2 u$$

Black-Scholes Equation Coefficient Form PDE

 $\frac{\partial u}{\partial t} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 u}{\partial x^2} + rx \frac{\partial u}{\partial x} - ru = 0$ $\int_{a}^{a} \frac{\partial^{2} u}{\partial t^{2}} + d_{a} \frac{\partial u}{\partial t} + \nabla \cdot (-c\nabla u - u + t) + \beta \cdot \nabla u + au = 0$ $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (\frac{1}{2}\sigma^{2}x^{2}\frac{\partial u}{\partial x}) + [rx - \sigma^{2}x]\frac{\partial u}{\partial x} - ru = 0$ Coefficient matching Alternative $d_a = 1, c = -\frac{1}{2}\sigma^2 x^2$ $d_a = 1, c = -\frac{1}{2}\sigma^2 x^2$ $\beta = 0, a = -r$ $\beta = rx - \sigma^2 x, a = -r$ $f = (-rx + \sigma^2 x) \frac{\partial u}{\partial x}$

https://www.comsol.com/model/the-black-scholes-equation-82

Weak Form PDE

- NO TEMPLATE!
- Extreme flexibility!

$$C\frac{\partial u}{\partial t} + \nabla \cdot (-\kappa \nabla u) - Q = 0$$
$$\int \left[C\frac{\partial u}{\partial t} w + \kappa \nabla w \cdot \nabla u \right] d\Omega = \int Qw d\Omega + \int w q_n dS \ \forall w$$

https://www.comsol.com/blogs/implementing-the-weak-form-in-comsol-multiphysics/

PDE in Weak formulation

- Weak = Integral ; based on variational formulation (conservation law)
- Most of COMSOL (and other tools') physics use such a formulation since most versatile
- It is the base of finite element (but also used within other schemes)
- Understanding how it works is the way to master what COMSOL does under the hood

Weak Form, Stationary

- General form:
- Multiply by test function v and integrate:
- Perform integration by parts

on left-hand side:

- Rearrange:
- Remember:
 - For Poisson's eq: $\Gamma = [u_x \ u_y]$, F = 1, R = u 0 (u constrained to 0 on boundaries)
 - Subdomain integral above is entered in the "weak" field: -test(ux) *ux test(uy) *uy + test(u) *F
 - On the boundary, set constraint expression: u

 $\nabla \cdot \Gamma = F$

 $\int_{\Omega} v\nabla \cdot \Gamma dA = \int_{\Omega} vF dA$

$$\int_{\partial\Omega} (v\Gamma \cdot n) ds - \int_{\Omega} (\nabla v \cdot \Gamma) dA = \int_{\Omega} vF \, dA$$
$$0 = \int_{\Omega} (\nabla v \cdot \Gamma + vF) \, dA + \int_{\partial\Omega} (-v\Gamma \cdot n) ds$$

Weak Form, Time Dependent

- Same development as stationary but start from: $d_a \frac{\partial u}{\partial t} + \nabla \cdot \Gamma = F$ $d_a \frac{\partial u}{\partial t} + \nabla \cdot \Gamma = F$
- And arrive at

$$0 = \int_{\Omega} \left(\nabla v \cdot \Gamma + vF - d_a v \frac{\partial u}{\partial t} \right) dA + \int_{\partial \Omega} (-v\Gamma \cdot n) ds$$

• Subdomain integral in the weak field: -test(ux)*ux - test(uy)*uy + test(u)*F - da*test(u)* ut

Using the Weak Form PDE Interface

COMSOL BLOG

Implementing the Weak Form in COMSOL Multiphysics

https://www.comsol.com/blogs/implementingthe-weak-form-in-comsol-multiphysics/

COMSOL BLOG

The Strength of the Weak Form

https://www.comsol.com/blogs/strength-weak-form/

COMSOL BLOG

A Brief Introduction to the Weak Form

https://www.comsol.co.in/blogs/briefintroduction-weak-form/

COMSOL BLOG

Discretizing the Weak Form Equations

https://www.comsol.co.in/blogs/discretizing-theweak-form-equations/

Derivatives

Solution field:	u
Spatial 1 st derivatives:	ux, uy, uz
Spatial 2 nd derivatives:	uxx, uxy,, uyz, uzz
Time derivatives:	ut, utt
Mixed derivatives:	uxt, uytt
Derivatives tangent to surfaces:	uTx, uTy, uTz
Derivatives of quantities other than the	d(q,t),d(q,x)
primary dependent variable:	

Integrated Demo: Thermal Curing Physics

Image by Joe Haupt — Own work. Licensed under <u>CC BY-SA 2.0</u>, via <u>Wikimedia Commons</u>.

Thermal Curing: Mathematical Model

$$\rho C_{p} \frac{\partial T}{\partial t} + \nabla \cdot (-\kappa \nabla T) = -\rho H_{r} \frac{\partial \alpha}{\partial t}$$
$$\frac{\partial \alpha}{\partial t} = A e^{(-E_{a}/RT)} (1-\alpha)^{n}$$

- Initial conditions: room temperature, zero curing
- Boundary conditions: heat flux of 10 kW/m^2
- Step 1: Pick appropriate Mathematics interfaces
 PDE + Domain ODE
- Step 2: Fit the equations into the templates

Thermal Curing: Choosing the Interface

$$\rho C_{p} \frac{\partial T}{\partial t} + \nabla \cdot (-\kappa \nabla T) = -\rho H_{r} \frac{\partial \alpha}{\partial t} \qquad \text{PDE}$$

$$e_{a} \frac{\partial^{2} u}{\partial t^{2}} + d_{a} \frac{\partial u}{\partial t} - \nabla \cdot (c \nabla u + \alpha u - \gamma) + \beta \cdot \nabla u + au = f$$

$$d_{a} = \rho C_{p}, c = \kappa, f = -\rho H_{r} \frac{\partial \alpha}{\partial t}$$

$$\frac{\partial \alpha}{\partial t} = A e^{(-E_{a}/RT)} (1-\alpha)^{n} \qquad \text{Domain ODE}$$

$$e_{a} \frac{\partial^{2} \alpha}{\partial t^{2}} + d_{a} \frac{\partial \alpha}{\partial t} = f$$

$$d_{a} = 1, f = A e^{(-E_{a}/RT)} (1-\alpha)^{n}$$

Thermal Curing: Heat Transfer Interface

https://www.comsol.com/blogs/modeling-the-thermal-curing-process/

Part IV: Boundaries and Interfaces

The World Versus Your World!

Image by Strebe — Own work. Licensed under CC BY-SA 3.0, via Wikimedia Commons

Jump and Boundary Conditions

$$\int_{V} \frac{\partial \phi}{\partial t} dV = -\int_{S} \vec{\Gamma} \cdot \vec{n} dS + \int_{V} f dV$$
$$\bigcirc \qquad Can't \text{ do this!}$$
$$\int_{V} \frac{\partial \phi}{\partial t} dV = -\int_{V} div(\vec{\Gamma}) dV + \int_{V} f dV$$

- 1. Stay with the integral equation
- 2. Focus

Jump and Boundary Conditions

Jump and Boundary Conditions

$$-\vec{\Gamma}_i \cdot \vec{n} = -\vec{\Gamma}_o \cdot \vec{n}$$

Inward flux

- Think about what is outside
- We have NOT considered surface production here

Boundary Conditions 1: Flux

$$-\vec{\Gamma}_i\cdot\vec{n}=\psi$$

Inward flux

- Example: Heat Transfer in Solids $-(-\kappa \nabla T) \cdot \vec{n} = q_0$
- Natural (Neumann) boundary conditions

Boundary Conditions: Mixed

• A constitutive assumption about the outside

- Example: Heat Transfer in Solids
- Mixed (Robin) boundary conditions

$$-\vec{\Gamma}_{i} \cdot \vec{n} = \psi$$

$$\psi = \underbrace{\frac{\kappa_{o}}{L_{ext}}} (u_{ext} - u)$$

$$-(-\kappa \nabla T) \cdot \vec{n} = h(T_{ext} - u)$$

T)

Boundary Conditions: Extremes?

- Temperature, voltage, displacement
- Dirichlet boundary conditions

More on Boundary Conditions

• Built-in spring foundation

• DIY boundary condition $f = f(u, \dot{u})$

https://www.comsol.com/blogs/how-to-make-boundary-conditions-conditional-in-your-simulation/ https://www.comsol.com/blogs/modeling-natural-and-forced-convection-in-comsol-multiphysics/

Part V: Surface Phenomena

- Boundary PDEs
- Edge PDEs

Lower Dimension PDE Interfaces

Built-In Interfaces for Lower Dimensional Physics

- Fluid Flow
 - Pipe Flow (pfl)
 - Water Hammer (whtd)
 - Thin-Film Flow, Shell (tffs)
- Heat Transfer
 - Heat Transfer in Pipes (htp)
 - Heat Transfer in Thin Shell (htsh)
 - Heat Transfer in Thin Films (htsh)
 - Heat Transfer in Fractures (htsh)
- Structural Mechanics
 - Shell (shell)
 - Membrane (mbrn)
 - Beam (beam)
 - Truss (truss)

- AC/DC
 - Electric Currents, Shell (ecs)
- RF
 - Transmission Line (tl)
- Chemical and Reaction Engineering
 - Surface Reactions (sr)
- Electrochemistry
 - Electrode, Shell (els)

Part VI: Miscellaneous

- PDEs in axisymmetric components
- Integrodifferential equations
- Nonlocal interactions
- Verification and validation
- Stabilization

PDEs in Axisymmetric Components

• In the PDE interfaces, differential operators do not have tensorial meanings

• The source term is your friend!

 Equation
Show equation assuming:
Study 1, Stationary
$e_{a}\frac{\partial^{2}u}{\partial t^{2}} + d_{a}\frac{\partial u}{\partial t} + \nabla \cdot \Gamma = f$
$\nabla = \left[\frac{\partial}{\partial r}, \frac{\partial}{\partial z}\right]$

$$\frac{\partial \Gamma_r}{\partial r} + \frac{\partial \Gamma_z}{\partial z} = f$$

COMSOL Blog Post

- Guidelines for Equation-Based Modeling in Axisymmetric Components
 - <u>https://www.comsol.com/blogs/guidelines-for-</u> equation-based-modeling-in-axisymmetriccomponents/

Integrodifferential Equations

ICOMSOL

Variable Limits of Integration

Solving Integrodifferential Equations

$$\rho C_p \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \left(-\kappa \frac{\partial T}{\partial x} \right) = aT^4 - b \int_0^L K(x,s) T(s)^4 ds$$

Source 1: a^*T^4

Source 2: -b*intop1(K(dest(x),x)*T^4)

https://www.comsol.com/blogs/integrals-with-moving-limits-and-solving-integro-differential-equations/

Nonlocal Interactions: Component Coupling Operators

Purpose:

- Pass data from one part of a component to another
- Pass data between different components

$$q_d(x_d) = f(q_s(x_s))$$
$$T: x_d \to x_s$$

Usage:

- Define operator in the source component/entity
- Use in the destination component/entity

https://www.comsol.com/blogs/part-2-mapping-variables-with-general-extrusion-operators/

Verification & Validation

- Exact solutions
- Benchmarks
- Analogous modules in COMSOL Multiphysics[®]

Verification

Method of manufactured solutions:

- 1. Assume a solution
- 2. Plug in PDE to get source term

 $\nabla \cdot (-c\nabla u - \alpha u + \gamma) + au = f$

- 3. Find initial & boundary conditions
- 4. Compute with IC, BC, and source term
- 5. Compare assumed and computed solution

Stabilization

- Convection dominated transport problems are numerically unstable
- Sophisticated techniques implemented in physics interfaces

$$u_t + b \cdot \nabla u = f$$

$$u_t + b \cdot \nabla u + \nabla \cdot (-c\nabla u) = f$$

 A simple stabilization technique for convective transport problems

Hands-on #1

3D, time dependent Use General form PDE

Computing integrals over time and space (Adding ODE, global or distributed)

General Form – A more compact formulation

• Inside domain

$$e_{a}\frac{\partial^{2} u}{\partial t^{2}} + d_{a}\frac{\partial u}{\partial t} + \nabla \cdot \Gamma = F$$

• On domain boundary

$$-\mathbf{n} \cdot \Gamma = G + \left(\frac{\partial R}{\partial u}\right)^T \mu \\ 0 = R$$

Transient Diffusion Equation + ODE

$$d_a \frac{\partial u}{\partial t} - \nabla \cdot (c\nabla u + \alpha u - \gamma) + \beta \cdot \nabla u + au = f$$

What if we wish to measure the global accumulation of "heat" over time?

$$U = \iiint_{V} u \, dV \quad \text{volume integral of solution}$$
$$w = \int_{t} U \, dt \qquad \text{time integral of volume integral}$$

Adding a ODE Transient Diffusion Equation + ODE

$$d_a \frac{\partial u}{\partial t} - \nabla \cdot (c\nabla u + \alpha u - \gamma) + \beta \cdot \nabla u + au = f$$

What if we wish to measure the global accumulation of "heat" over time?

$$U = \iiint_{V} u \, dV$$
$$w = \int_{t=[t_0, t_1]} U \, dt \Leftrightarrow \frac{dw}{dt} = U$$
$$wt - U = 0 \qquad \text{=> This is a Global ODE in the global state variable } w$$

PDEs + Distributed ODEs

(what if the ODE is depending on space) (comment on continuity of the solution)

Transient Diffusion Equation + Distributed ODE

What if we get "damage" from local accumulation of "heat".

Example of real application: bioheating

$$P(x, y, z) = \int_{t} u(x, y, z) dt$$
 local time integral of solution

We want to visualize the *P*-field to assess local damage.

Let's assume damage happens where P>20.

 $\Leftrightarrow \frac{dP}{dt} = u$ at each point in space

Transient Diffusion Equation +
Distributed ODE
$$\frac{dP}{dt} = u$$
 local time integral of solution

But this can be seen as a PDE with no spatial derivatives =

= Distributed ODE

Use coefficient form with unknown field P, c = 0, f = u, da=1

Let all other coefficients be zero

Or use new Domain ODEs and DAEs interface

Use of logical operators

Questions?

Let's compare

- derived values
- with the value obtained using the operator "timeint" What's timeint?

There are special built-in operators available for modeling and for evaluating results; these operators are similar to functions but behave differently. Many physics interfaces use these operators to implement equations and special functionality. See <u>Table 5-8</u> and the detailed descriptions that follow.

TABLE 5-8: BUILT-IN OPERATORS

Built-In Operators

at	error('string')	prev(expr,i)
atlocal	fsens(expr)	reacf(U)
attimemax	if(cond,expr1,expr2)	<pre>reacf(U,dim)</pre>
attimemin	integrate(expr,var,	realdot(a,b)
atxd, atonly, noxd	lower,upper)	<pre>scope.ati(coordinate exprs,expr)</pre>
ballint(r,expr),	isdefined(Variable)	sens(expr,i)
<pre>ballavg(r,expr),</pre>	isinf(expr)	<pre>setconst(const,value)</pre>
circint(r, expr),	islinear(expr)	setind(par,index)
circavg(r, expr),	isnan(<i>expr</i>)	setval(par,value)
diskint(r, expr),	jacdepends(expr)	shapeorder(Variable)
diskavg(r,expr),	jacdepends(expr,var)	side(entity,expr)
<pre>sphint(r,expr),</pre>	lindev	<pre>subst(expr, expr1_orig, expr1_subst,)</pre>
<pre>sphavg(r,expr)</pre>	linper	<pre>sum(expr,index,</pre>
bdf(expr,i)	linpoint	lower,upper)
bndenv(expr)	linsol	test(expr)
centroid(expr)	lintotal	timeint, timeavg
circumcenter(expr)	lintotalavg	timemax, timemin
d(f,x)	lintotalpeak	treatasconst(expr)
depends (expr)	lintotalrms	try_catch(tryExpr,
depends (<i>EXpr</i> , var)	linzero	catchExpr)
dest(expr)	mean(expr)	uflux(U), dflux(U)
down(expr)	noenv(expr)	up(expr)
dtang(f,x)	nojac(expr)	<pre>var(expr,fieldname1, fieldname2,)</pre>
emetric(exprx,expry)	pd(f,x)	with
emetric(<i>exprx</i> , <i>expry</i> ,exprz)	ppr	withsol(tag, expr)

