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A Look Under the Hood



A Look Under the Hood



Modeling Approaches 
• Insert predefined physics

• Coupling physics (manual or automatic)

• Insert predefined physics
• Coupling physics (manual or automatic)

• Enter user defined functions. All 
expressions can depend on all the 
variables introduced (analytical, 
interpolation from file ...)

• Insert predefined physics
• Coupling physics (manual or automatic)

• Enter user defined functions. All 
expressions can depend on all the 
variables introduced (analytical, 
interpolation from file ...)

• Add or change terms of the equations 
set in the physics (and multiphysics) 
nodes
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• Insert predefined physics
• Coupling physics (manual or automatic)

• Enter user defined functions. All 
expressions can depend on all the 
variables introduced (analytical, 
interpolation from file ...)

• Add or change terms of the equations 
set in the physics (and multiphysics) 
nodes

• Insert your own equations with equation 
forms (and make it automatic with 
Physics Builder)



The Mathematics Interface



Equation-Based Modeling
• What?

– ODE & DAE interfaces, PDE interfaces, boundary conditions

• Why?
– Lumped parameter systems, continuous systems

• How?
– Demo: population dynamics, thermal curing

• Could I get myself in trouble?
– Verification & validation

• Hands on : Coupling PDE with global and distributed ODE



What PDE, ODE, and DAE stand for?
• Partial differential equations (PDE)

– Three main interfaces (form)

– Need boundary conditions

• Ordinary differential equations (ODEs)

– Global (space indipendent)

– Distributed (space dependent)

– Distributed, but not continuous

– (Always) time dependent

• Algebraic equations

– As for ODE, global or distributed

– Do not contain time (and often not even the space)

  fuc
t

u
da 





),( tuF
dt

du


012 u

Mechanics, CFD, 
EM…. .

Electrical
circuits, 

cinematism...   ,



Part I: Lumped Parameter Systems

• Global ODEs

• Global Algebraic Equation



Lumped Parameter Systems

Contaminant concentration
𝑐(𝑥, 𝑦, 𝑧, 𝑡)

Contaminant amount 
𝐶(𝑡)

Population dynamics Population dynamics



Lumped Parameter Systems

• Balance laws
Rate of change of  some quantity = amount entering - leaving + production - consumption

𝑚
𝑑2𝑢

𝑑𝑡2
= −𝑘𝑢 − 𝑐

𝑑𝑢

𝑑𝑡

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝑘𝑢 + 𝑐

𝑑𝑢

𝑑𝑡
= 0

𝑑𝑢

𝑑𝑡
= 𝑎1𝑢 1 − ൗ𝑢 𝑘 − 𝑏1𝑢𝑣

𝑑𝑣

𝑑𝑡
= −𝑎2𝑣 + 𝑏2𝑢𝑣

Example 1 : Dynamics Example 2 : Prey-predator system

𝑑𝑢

𝑑𝑡
− 𝑎1𝑢 1 − ൗ𝑢 𝑘 + 𝑏1𝑢𝑣 = 0

𝑑𝑣

𝑑𝑡
+ 𝑎2𝑣 − 𝑏2𝑢𝑣 = 0



Global ODEs
• Example: Lotka-Volterra equations

𝑑𝑢

𝑑𝑡
= 𝑎1𝑢(1 − Τ𝑢 𝑘) − 𝑏1𝑢𝑣

𝑑𝑣

𝑑𝑡
= −𝑎2𝑣 + 𝑏2𝑢𝑣

𝑢 0 = 𝑢𝑖𝑛𝑖 , 𝑣 0 = 𝑣𝑖𝑛𝑖



Global Algebraic Equations
• Same template as Global ODEs

• What are the initial values for? 

– Stationary solvers

https://www.comsol.com/blogs/modeling-hydrostatic-pressure-fluid-deformable-container/

https://www.comsol.com/blogs/modeling-hydrostatic-pressure-fluid-deformable-container/


Physics + Global Algebraic Equations
• You can add extra degrees of freedom to a physics interface

https://www.comsol.com/blogs/modeling-hydrostatic-pressure-fluid-deformable-container/

https://www.comsol.com/blogs/modeling-hydrostatic-pressure-fluid-deformable-container/


• Domain ODEs and DAEs
• Boundary ODEs and DAEs
• Edge ODEs and DAEs
• Point ODEs and DAEs

Part II: Continuous Systems
Without Spatial Interaction



Domain ODEs



Domain ODEs
• Problem parameters are spatially variable

– Initial conditions 𝑢 𝑥, 0 = 𝑢𝑖𝑛𝑖(𝑥),…

– Carrying capacity is spatially variable 𝑘 = 𝑘(𝑥)

– Prey-predator interactions have different outcomes based on location 
• 𝑏1 = 𝑏1 𝑥 , 𝑏2 = 𝑏2(𝑥)

– Climate effect? 𝑎1 = 𝑎1 (𝑥, 𝑇)

• Every point evolves independent of neighbors
– No spatial derivatives in the equation! 

– No boundary conditions needed



Domain ODEs in Physics
• Material evolution

𝜕𝛼

𝜕𝑡
= 𝐴𝑒(− ൗ𝐸𝑎

𝑅𝑇)(1 − 𝛼)𝑛

𝜕𝛼

𝜕𝑡
= 𝐴𝑒

(− ൗ
𝐸𝑎

𝑅𝑇(𝑥))(1 − 𝛼)𝑛

• Reaction kinetics
– Built-in if you use the Chemical Reaction Engineering Module



ODE or 1D PDE?
𝑑2𝑢

𝑑𝑡2
− 𝑎𝑢 + 𝑔 𝑡 = 0

𝑑2𝑢

𝑑𝑥2
− 𝑎𝑢 + 𝑔 𝑥 = 0

Spatial derivative use PDE interfaces

IVP = ODE

BVP = PDE



Domain Algebraic Equations

• Solve 𝑢3 = 𝑝(𝑥, 𝑡, . . ) for 𝑢

• Interface is the same as Domain ODE

https://www.comsol.com/blogs/solving-algebraic-field-equations/

https://www.comsol.com/blogs/solving-algebraic-field-equations/


Example: Ideal/Non-ideal gas law
• Assume u=(u,v,w) and p given by Navier-Stokes

• Want to solve Convection-Conduction in gas:

0u)(  TCTk 

• Ideal gas: 𝜌 given by

• Easy - analytical

• non-ideal gas law (needed for 
high molecular weight at very 
high pressures): 𝜌 solution of

• Difficult – implicit equation

• How to proceed?

0)1)(( 2   DCBpA

RT

pM




Example: Non-ideal gas law
• How to solve:

• Third order equation in

• Pressure p is function of space

• So: this is an algebraic equation at each point in space. Solution

0)1)(( 2   DCBpA

http://www.comsol.com/blogs/solving-algebraic-field-equations/

 DCBpAfde aa  )1)((,0 2

http://www.comsol.com/blogs/solving-algebraic-field-equations/


Distributed Algebraic Equation
• What about non-linear equations with multiple solutions?
• Which solution do you get?
• For simplicity, consider the equation (u-2)^2-p=0, where p is a constant
• The solution you get will depend on the Initial Guess given by the PDE 

Physics Interface

• If we let p=x*y and let our modeling region be the unit square, then at 
(x,y)=(0,0) we should get the unique solution u=2 but at (x,y)=(1,1) we get 1 
or 3 depending on our starting guess. See next slide.



Distributed Algebraic Equation
u=3

u=2

u=1

u=2



u=3

u=2

u=1

u=2

Distributed Algebraic Equation



Part III: Continuous Systems
with Spatial Interaction

Partial Differential Equations



Prey-Predator System with Migration
• PDEs!

• What if the second species does not migrate?

– Domain ODE or PDE with 𝑐2 = 0?

• Can we have a convective term?

• What happens for negative 𝑐1 or 𝑐2?
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Balance Laws: Integral Formulation
• Balance laws for a continuous system

Rate of change of  some quantity = amount entering or leaving through the boundary + production or 
consumption inside

𝑑

𝑑𝑡
න
𝑉

ϕ𝑑𝑉 = −න
𝑆
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𝑓𝑑𝑉
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𝑛
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Balance Laws: Differential Equations

𝑑

𝑑𝑡
න
𝑉

ϕ𝑑𝑉 = −න
𝑆

ԦΓ·𝑛𝑑𝑆 + න
𝑉

𝑓𝑑𝑉

V

S

𝑛
Γ

න
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𝜕ϕ

𝜕𝑡
𝑑𝑉 = −න

𝑆

ԦΓ·𝑛𝑑𝑆 + න
𝑉

𝑓𝑑𝑉

න
𝑉

𝜕ϕ

𝜕𝑡
𝑑𝑉 = −න

𝑉

𝑑𝑖𝑣( ԦΓ) 𝑑𝑉 + න
𝑉

𝑓𝑑𝑉

න
𝑉

[
𝜕ϕ

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ − 𝑓]𝑑𝑉 = 0

Divergence theorem



Balance Laws: Differential Equations

න
𝑉

[
𝜕ϕ

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ − 𝑓]𝑑𝑉 = 0

𝜕ϕ

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ = 𝑓

Localization argument
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General Form PDE

Usually 𝜙 = 𝑒
𝜕𝑢

𝜕𝑡
+ 𝑑𝑢

𝜕ϕ

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ = 𝑓

𝑒
𝜕2𝑢

𝜕𝑡2
+ 𝑑

𝜕𝑢

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ = 𝑓

HT 𝜙 = 𝜌𝑐𝑝𝑇 𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ = 𝑓

Template



Constitutive Assumptions

• Take the usual form for the flux

ԦΓ = −𝑐𝛻𝑢 − 𝛼𝑢 + 𝛾

𝑒
𝜕2𝑢

𝜕𝑡2
+ 𝑑

𝜕𝑢

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ = 𝑓

You specify  𝑐, 𝛼, 𝛾



• Specify units for independent variable and source

Coefficient Form PDE Template
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Coefficient Form PDE
Acoustics Chemistry Black-Scholes Fischer’s Ecologic

Model

𝒖 Pressure Concentration Cost of option Population

𝐞𝐚 1/𝜌𝑐2

𝒅𝐚 1 1 1

𝒄 1/𝜌 Diffusion coef.
−
1

2
𝜎2𝑥2

Dispersal rate

𝜸 𝑞𝑑/𝜌

𝜷 Velocity 𝑟𝑥 − 𝜎2𝑥

𝒂 −𝑟 𝑟( ൗ𝑢 𝐾 − 1)

𝒇 𝑄𝑚 Reaction rate



Helmholtz Equation, Coefficient Form PDE
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Coefficient matching

𝑎 = −𝜅2

𝑓 = 𝑔
𝑎 = 0
𝑓 = 𝑔 + 𝜅2𝑢

Option 1 Option 2



Helmholtz Equation, General Form PDE
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Match terms

𝑒
𝜕2𝑢

𝜕𝑡2
+ 𝑑

𝜕𝑢

𝜕𝑡
+ 𝑑𝑖𝑣 ԦΓ = 𝑓

𝑓 = 𝑔 + 𝑘2𝑢

ԦΓ = −𝑐𝛻𝑢
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Alternative

Black-Scholes Equation Coefficient Form PDE 

https://www.comsol.com/model/the-black-scholes-equation-82


Weak Form PDE

• NO TEMPLATE!

• Extreme flexibility!

𝐶
𝜕𝑢

𝜕𝑡
+ 𝛻 ∙ −𝜅𝛻𝑢 − 𝑄 = 0

න 𝐶
𝜕𝑢

𝜕𝑡
𝑤 + 𝜅𝛻𝑤 ∙ 𝛻𝑢 𝑑Ω = න𝑄𝑤𝑑Ω +න𝑤𝑞𝑛𝑑𝑆 ∀𝑤

https://www.comsol.com/blogs/implementing-the-weak-form-in-comsol-multiphysics/

https://www.comsol.com/blogs/implementing-the-weak-form-in-comsol-multiphysics/


PDE in Weak formulation
• Weak = Integral ; based on variational formulation (conservation law)

• Most of COMSOL (and other tools’) physics use such a formulation since most 
versatile

• It is the base of finite element (but also used within other schemes)

• Understanding how it works is the way to master what COMSOL does under the hood

F Γ

dVFdV    


  Γ



Weak Form, Stationary
• General form: 𝛻 ∙ Γ = 𝐹
• Multiply by test function v 

and integrate: Ω׬ 𝑣𝛻 ∙ Γ𝑑𝐴 = Ω׬ 𝑣𝐹𝑑𝐴

• Perform integration by parts 

on left-hand side:        ׬𝜕Ω 𝑣Γ ∙ 𝑛 𝑑𝑠 − Ω׬ 𝛻𝑣 ∙ Γ 𝑑𝐴 = Ω׬ 𝑣𝐹 𝑑𝐴

• Rearrange: 0 = Ω׬ 𝛻𝑣 ∙ Γ + 𝑣𝐹 𝑑𝐴 + Ω��׬ −𝑣Γ ∙ 𝑛 𝑑𝑠

• Remember:

– For Poisson’s eq: Γ = [𝑢𝑥 𝑢𝑦], F = 1, R = u - 0
(u constrained to 0 on boundaries)

– Subdomain integral above is entered in the “weak” field: -test(ux)*ux - test(uy)*uy + test(u)*F 

– On the boundary, set constraint expression: u

𝛻 ∙ Γ = 𝐹

Ω

𝜕Ω



Weak Form, Time Dependent
• Same development as stationary but start from:

𝑑𝑎
𝜕𝑢

𝜕𝑡
+ 𝛻 ∙ Γ = 𝐹

• And arrive at
0 = Ω׬ 𝛻𝑣 ∙ Γ + 𝑣𝐹 − 𝑑𝑎𝑣

𝜕𝑢

𝜕𝑡
𝑑𝐴 + Ω��׬ −𝑣Γ ∙ 𝑛 𝑑𝑠

• Subdomain integral in the weak field:
-test(ux)*ux - test(uy)*uy + test(u)*F – da*test(u)* ut

𝑑𝑎
𝜕𝑢

𝜕𝑡
+ 𝛻 ∙ Γ = 𝐹

Ω

𝜕Ω



Using the Weak Form PDE Interface

https://www.comsol.com/blogs/implementing-
the-weak-form-in-comsol-multiphysics/ https://www.comsol.co.in/blogs/brief-

introduction-weak-form/

https://www.comsol.com/blogs/strength-weak-form/

https://www.comsol.co.in/blogs/discretizing-the-
weak-form-equations/

https://www.comsol.com/blogs/implementing-the-weak-form-in-comsol-multiphysics/
https://www.comsol.co.in/blogs/brief-introduction-weak-form/
https://www.comsol.com/blogs/strength-weak-form/
https://www.comsol.co.in/blogs/discretizing-the-weak-form-equations/


Derivatives
Solution field: u

Spatial 1st derivatives: ux, uy, uz

Spatial 2nd derivatives: uxx, uxy, …, uyz, uzz

Time derivatives: ut, utt

Mixed derivatives: uxt, uytt

Derivatives tangent to surfaces: uTx, uTy, uTz

Derivatives of quantities other than the 
primary dependent variable:

d(q,t),d(q,x)

More: “Differentiation Operators” in the COMSOL Multiphysics Reference Manual



Integrated Demo: Thermal Curing Physics

Heated 
mold

Thermoset in 
the cavity

T, α

x

Image by Joe Haupt — Own work. Licensed 
under CC BY-SA 2.0, via Wikimedia Commons.

https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://commons.wikimedia.org/wiki/File:Vintage_Philco_Model_41-230T_Table_Radio,_Bakelite_Cabinet,_Two_Band,_7_Tubes,_Circa_1941_(13608795385).jpg


Thermal Curing: Mathematical Model

• Initial conditions: room temperature, zero curing

• Boundary conditions: heat flux of 10 ΤkW m2

• Step 1: Pick appropriate Mathematics interfaces

– PDE + Domain ODE

• Step 2: Fit the equations into the templates
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Thermal Curing: Choosing the Interface
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Thermal Curing: Heat Transfer Interface

https://www.comsol.com/blogs/modeling-the-thermal-curing-process/

https://www.comsol.com/blogs/modeling-the-thermal-curing-process/


Part IV: Boundaries and Interfaces



The World Versus Your World!

Image by Strebe — Own work. Licensed under CC BY-SA 3.0, via Wikimedia Commons.

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://commons.wikimedia.org/wiki/File:Winkel_triple_projection_SW.jpg


Jump and Boundary Conditions 

න
𝑉

𝜕𝜙

𝜕𝑡
𝑑𝑉 = −න

𝑆

ԦΓ·𝑛𝑑𝑆 + න
𝑉

𝑓𝑑𝑉

න
𝑉

𝜕ϕ

𝜕𝑡
𝑑𝑉 = −න

𝑉

𝑑𝑖𝑣( ԦΓ) 𝑑𝑉 + න
𝑉

𝑓𝑑𝑉

Can’t do this!

1. Stay with the integral equation
2. Focus



Jump and Boundary Conditions

S

𝑛1 → 𝑛, 𝑛2 → −𝑛

𝑛 𝑛1

𝑛2 S

න
𝑉

𝜕𝜙

𝜕𝑡
𝑑𝑉 = −න

𝑆

ԦΓ·𝑛𝑑𝑆 + න
𝑉

𝑓𝑑𝑉

𝑉 → 0, 𝑆 ≠ 0

න
𝑆

ԦΓ·𝑛𝑑𝑆 = 0

න
𝑆

( ԦΓ1−ԦΓ2)·𝑛𝑑𝑆 = 0

ԦΓ ∙ 𝑛=0



Jump and Boundary Conditions

• Think about what is outside

• We have NOT considered surface production 
here

𝑛

S

𝑖 𝑜
−ԦΓ𝑖 ∙ 𝑛=−ԦΓ𝑜 ∙ 𝑛

Inward flux



Boundary Conditions 1: Flux

• Example: Heat Transfer in Solids

• Natural (Neumann) boundary conditions

𝑛𝜓

−ԦΓ𝑖 ∙ 𝑛 = 𝜓

Inward flux

−(−𝜅𝛻𝑇) ∙ 𝑛 = 𝑞0



Boundary Conditions: Mixed
• A constitutive assumption about the outside

• Example: Heat Transfer in Solids

• Mixed (Robin) boundary conditions

−ԦΓ𝑖 ∙ 𝑛 = 𝜓

𝜓 =
𝜅𝑜
𝐿𝑒𝑥𝑡

(𝑢𝑒𝑥𝑡 − 𝑢)

−(−𝜅𝛻𝑇) ∙ 𝑛 = ℎ(𝑇𝑒𝑥𝑡 − 𝑇)

𝑛𝜓
𝑢𝑒𝑥𝑡

𝑢



Boundary Conditions: Extremes?

• Temperature, voltage, displacement 

𝑛𝜓
𝑢𝑒𝑥𝑡

𝑢

−ԦΓ𝑖 ∙ 𝑛 = 𝜓

−(−𝜅𝛻𝑢) ∙ 𝑛 =
𝜅𝑜
𝐿𝑒𝑥𝑡

(𝑢𝑒𝑥𝑡 − 𝑢)

(
𝜅

𝜅𝑜
𝐿𝑒𝑥𝑡𝛻𝑢) ∙ 𝑛 = (𝑢𝑒𝑥𝑡 − 𝑢)

𝜅𝑜 ≫ 𝜅 ⇒ 𝑢 = 𝑢𝑒𝑥𝑡

• Dirichlet boundary conditions



More on Boundary Conditions

• Built-in spring foundation • DIY boundary condition
𝑓 = 𝑓(𝑢, ሶ𝑢)

https://www.comsol.com/blogs/how-to-make-boundary-conditions-conditional-in-your-simulation/
https://www.comsol.com/blogs/modeling-natural-and-forced-convection-in-comsol-multiphysics/

https://www.comsol.com/blogs/how-to-make-boundary-conditions-conditional-in-your-simulation/
https://www.comsol.com/blogs/modeling-natural-and-forced-convection-in-comsol-multiphysics/


Part V: Surface Phenomena

• Boundary PDEs

• Edge PDEs



Lower Dimension PDE Interfaces



Built-In Interfaces for Lower Dimensional Physics

• Fluid Flow

– Pipe Flow (pfl)

– Water Hammer (whtd)

– Thin-Film Flow, Shell (tffs)

• Heat Transfer

– Heat Transfer in Pipes (htp)

– Heat Transfer in Thin Shell (htsh)

– Heat Transfer in Thin Films (htsh)

– Heat Transfer in Fractures (htsh)

• Structural Mechanics

– Shell (shell)

– Membrane (mbrn)

– Beam (beam)

– Truss (truss)

• AC/DC

– Electric Currents, Shell (ecs)

• RF

– Transmission Line (tl)

• Chemical and Reaction Engineering

– Surface Reactions (sr)

• Electrochemistry

– Electrode, Shell (els)



Part VI: Miscellaneous

• PDEs in axisymmetric components
• Integrodifferential equations
• Nonlocal interactions
• Verification and validation
• Stabilization 



PDEs in Axisymmetric Components
• In the PDE interfaces, differential operators do not have tensorial meanings

• The source term is your friend!

𝛻 ∙ Γ = 𝑄

1

𝑟

𝜕(𝑟Γ𝑟)

𝜕𝑟
+
𝜕Γ𝜙

𝜕𝜙
+
𝜕Γ𝑧
𝜕𝑧

= 𝑄

Axisymmetry

𝜕Γ𝑟
𝜕𝑟

+
𝜕Γ𝑧
𝜕𝑧

+
Γ𝑟
𝑟
= 𝑄 𝜕Γ𝑟

𝜕𝑟
+
𝜕Γ𝑧
𝜕𝑧

= 𝑓



• Guidelines for Equation-Based Modeling in 
Axisymmetric Components

– https://www.comsol.com/blogs/guidelines-for-
equation-based-modeling-in-axisymmetric-
components/

COMSOL Blog Post

https://www.comsol.com/blogs/guidelines-for-equation-based-modeling-in-axisymmetric-components/


Integrodifferential Equations

𝐼 = න

0

𝐿

𝑐𝐴𝑑𝑥 Integration Coupling Operator

𝐼(𝑠) = න

0

𝑠

𝑐𝐴𝑑𝑥 ?



Variable Limits of Integration

𝐼(𝑠) = 0׬
𝑠
𝑐𝐴𝑑𝑥=0׬

𝐿
𝑘(𝑠, 𝑥)𝑐𝐴𝑑𝑥

Integration Coupling operator!

𝐼(𝑠) = 0׬
𝑠
𝑐𝐴𝑑𝑥=0׬

𝐿
𝑘(𝑑𝑒𝑠𝑡(𝑥), 𝑥)𝑐𝐴𝑑𝑥



Solving Integrodifferential Equations

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑥
−𝜅

𝜕𝑇

𝜕𝑥
= 𝑎𝑇4 − 𝑏න

0

𝐿

𝐾 𝑥, 𝑠 𝑇(𝑠)4𝑑𝑠

Source 1: a*T^4

Source 2: -b*intop1(K(dest(x),x)*T^4)

https://www.comsol.com/blogs/integrals-with-moving-limits-and-solving-integro-differential-equations/

https://www.comsol.com/blogs/integrals-with-moving-limits-and-solving-integro-differential-equations/


Nonlocal Interactions: Component Coupling Operators

Purpose: 
• Pass data from one part of a component to 

another
• Pass data between different components

𝑞𝑑 𝑥𝑑 = 𝑓 𝑞𝑠 𝑥𝑠
𝑇: 𝑥𝑑 → 𝑥𝑠

Usage: 
• Define operator in the source 

component/entity
• Use in the destination component/entity

https://www.comsol.com/blogs/part-2-mapping-variables-with-general-extrusion-operators/

https://www.comsol.com/blogs/part-2-mapping-variables-with-general-extrusion-operators/


Verification & Validation
• Exact solutions
• Benchmarks
• Analogous modules in COMSOL Multiphysics®



Verification
Method of manufactured solutions:
1. Assume a solution
2. Plug in PDE to get source term

3. Find initial & boundary conditions
4. Compute with IC, BC, and source term 
5. Compare assumed and computed solution

fauuuc  )( 

https://www.comsol.com/blogs/verify-simulations-with-the-method-of-manufactured-solutions/

https://www.comsol.com/blogs/verify-simulations-with-the-method-of-manufactured-solutions/


Stabilization
• Convection dominated 

transport problems are 
numerically unstable

• Sophisticated techniques 
implemented in physics 
interfaces

• A simple stabilization 
technique for convective 
transport problems

fubut 

fucubut  )(

https://www.comsol.com/blogs/understanding-stabilization-methods/

https://www.comsol.com/blogs/understanding-stabilization-methods/


Hands-on #1 



3D, time dependent
Use General form PDE

Computing integrals over time and space
(Adding ODE, global or distributed)



General Form – A more compact formulation

• Inside domain

• On domain boundary

























R
u

R
G

T

0

n

F
t

u
d

t

u
e aa 









2

2



Coefficient form:

c=1

General form:

 ux uy uz    

“Cooling” (0 at ends)

coefficient from u=0

general form .uR 

“Heat Source”

Transient 0->100 s



2

2
( )a a

u u
e d c u u u au f

u t
  

 
        

 

Transient Diffusion Equation + ODE

integral  volumeof integral e       tim

solution of integral    volume

dtUw

dVuU

t

V









What if we wish to measure the global accumulation of “heat” over time?



2

2
( )a a

u u
e d c u u u au f

u t
  

 
        

 

Adding a ODE
Transient Diffusion Equation + ODE

0

],[ 10













Uwt

U
dt

dw
dtUw

dVuU

ttt

V

=> This is a Global ODE in the 
global state variable w

What if we wish to measure the global accumulation of “heat” over time?



Global Equation ODE:

Same time-dependent problem as earlier

Time-dependent 0-100

Volume integration of u

ODE: wt-U



PDEs + Distributed ODEs

(what if the ODE is depending on space)
(comment on continuity of the solution)



Transient Diffusion Equation + 
Distributed ODE

dtzyxuzyxP
t

 ),,( ),,(

What if we get “damage” from local accumulation of “heat”.

Example of real application: bioheating

local time 

integral of solution

We want to visualize the P-field to assess local damage.

Let’s assume damage happens where P>20.

spacein point each at     u
dt

dP




solution of integral  timelocal    u
dt

dP


But this can be seen as a PDE with no spatial derivatives =

= Distributed ODE

Use coefficient form with unknown field P, c = 0, f = u, da=1

Let all other coefficients be zero

Or use new Domain ODEs and DAEs interface

Transient Diffusion Equation +
Distributed ODE



Use of logical operators

Volume where P>20 and we 
get damage



Questions?



Let’s compare
• derived values
• with the value obtained using the operator “timeint”
What’s timeint?


